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Abstract
We present a class of solutions of the two-dimensional Toda lattice equation, its
fully discrete analogue and its ultra-discrete limit. These solutions demonstrate
the existence of soliton resonance and web-like structure in discrete integrable
systems such as differential-difference equations, difference equations and
cellular automata (ultra-discrete equations).

PACS numbers: 02.30.Jr, 05.45.Yv

1. Introduction

The discretization of integrable systems is an important issue in mathematical physics. The
most common situation is that in which some or all of the independent variables are discretized.
A discretization process in which the dependent variables are also discretized in addition to
the independent variables is known as ‘ultra-discretization’. One of the most important ultra-
discrete soliton systems is the so-called soliton cellular automaton (SCA) [12, 16, 17]. A
general method to obtain the SCA from discrete soliton equations was proposed in [6, 18] and
involves using an appropriate limiting procedure. Another issue which has received renewed
interest in recent years is the phenomenon of soliton resonance, which was first discovered
for the Kadomtsev–Petviashvili (KP) equation [8] (see also [7, 11]). More general resonant
solutions possessing a web-like structure have recently been observed in a coupled KP (cKP)
system [4, 5] and for the KP equation itself [1]. In particular, the Wronskian formalism was
used in [1] to classify a class of resonant solutions of KP which also satisfy the Toda lattice
hierarchy. It was also conjectured in [1] that resonance and web structure are not limited to
KP and cKP, but rather they are a generic feature of integrable systems whose solutions can
be expressed in terms of Wronskians.
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The aim of this paper is to study soliton resonance and web structure in discrete soliton
systems. In particular, by studying a class of soliton solutions of the two-dimensional Toda
lattice (2DTL) equation, of its fully discrete version, and of their ultra-discrete analogue
which was recently introduced by Nagai et al [9, 10], we show that an analogue to the class of
solutions studied in [1] can be defined for all three of these systems, and that a similar type of
resonant solutions with web-like structure is produced as a result in all three of these systems.
To our knowledge, this is the first time that resonant behaviour and web structure have been
observed in discrete soliton systems. These results also confirm that soliton resonance and
web-like structure are general features of two-dimensional integrable systems whose solutions
can be expressed via the determinant formalism.

2. The two-dimensional Toda lattice equation

We start by considering the two-dimensional Toda lattice (2DTL) equation,

∂2

∂x∂t
Qn = Vn+1 − 2Vn + Vn−1, (2.1)

with Qn(x, t) = log[1 + Vn(x, t)]. Equation (2.1) can be written in bilinear form

∂2τn

∂x∂t
τn − ∂τn

∂t

∂τn

∂x
= τn+1τn−1 − τ 2

n (2.2)

through the transformation

Vn(x, t) = ∂2

∂x∂t
log τn(x, t). (2.3)

It is well known that some solutions of the 2DTL equation can be written via the Casorati
determinant form τn = τ (N)

n [3], with

τ (N)
n =

∣∣∣∣∣∣∣∣
f (1)

n · · · f
(1)
n+N−1

...
. . .

...

f (N)
n · · · f

(N)
n+N−1

∣∣∣∣∣∣∣∣ , (2.4)

where
{
f (1)

n (x, t), . . . , f (N)
n (x, t)

}
is a set of N linearly independent solutions of the linear

equations

∂f (i)
n

∂x
= fn+1,

∂f (i)
n

∂t
= −fn−1, (2.5)

for 1 � i � N . (Note that the superscript ‘(i)’ does not denote differentiation here.) For
example, a two-soliton solution of the 2DTL is obtained by the set {f (1), f (2)}, with

f (i)
n = eθ

(2i−1)
n + eθ

(2i)
n , i = 1, 2, (2.6)

where the phases θ(j) are given by linear functions of (n, x, t):

θ(j)
n (x, t) = n log pj + pjx − 1

pj

t + θ
(j)

0 , j = 1, . . . , 4, (2.7)

with p1 < p2 < p3 < p4. Equation (2.6) can be extended to the N -soliton solution by
considering {f (1), . . . , f (N)}, with each f (i) defined according to equation (2.6).

On the other hand, solutions of the 2DTL equation can also be obtained by the set of τ

functions
{
τ (N)
n

∣∣N = 1, . . . ,M
}

with the choice of f -functions,

f (i)
n = fn+i−1, 1 < i � N � M, (2.8)
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with

fn =
M∑

j=1

eθ
(j)
n , (2.9)

and with the phases θ
(j)
n , 1 � j � M , still given by equation (2.7). (Note that the meaning of

N and M is the opposite of [1].) If the f -functions are chosen according to equation (2.8), the
τ function τ (N)

n is then given by the Hankel determinant

τ (N)
n =

∣∣∣∣∣∣∣
fn · · · fn+N−1

...
. . .

...

fn+N−1 · · · fn+2N−2

∣∣∣∣∣∣∣ , (2.10)

for 1 � N � M . It should be noted that, even when the set of functions
{
f (i)

n

}N

i=1 is
chosen according to equation (2.8), no derivatives appear in the τ function, and therefore
equation (2.10) cannot be considered a Wronskian in the same sense as for the KP equation
(cf equation (1.9) in [1]). Nonetheless, this choice produces a similar outcome as in the
KP equation. Indeed, similar to [1], we have the following:

Lemma 2.1. Let fn be given by equation (2.9), with θ
(j)
n (j = 1, . . . ,M) given by

equation (2.7). Then, for 1 � N � M − 1 the τ function defined by the Hankel
determinant (2.10) has the form

τ (N)
n =

∑
1�i1<···<iN �M

�(i1, . . . , iN ) exp


 N∑

j=1

θ
(ij )
n


 , (2.11)

where �(i1, . . . , iN ) is the square of the van der Monde determinant,

�(i1, . . . , iN ) =
∏

1�j<l�N

(
pij − pil

)2
.

Proof. Apply the Binet–Cauchy theorem to equation (2.10), as in [1]. �

An immediate consequence of lemma 2.1 is that the τ function τ (N)
n is positive definite,

and therefore all the solutions generated by it are non-singular. Like its analogue in the
KP equation [1], the above τ function produces soliton solutions of resonant type with
web structure. More precisely, in the next section we show that, like its analogue in the
KP equation, the above τ function produces an (N−, N+)-soliton solution, that is, a solution
with N− = M −N asymptotic line solitons as n → −∞ and N+ = N asymptotic line solitons
as n → ∞.

Before we turn our attention to resonant solutions, however, it is useful to take a look at
the one-soliton solution of the 2DTL equation. Let us introduce the function

wn(x, t) = ∂

∂x
log τn(x, t), (2.12)

so that the solution of the 2DTL equation is given by

Vn(x, t) = ∂

∂ t
wn(x, t). (2.13)

If τn = eθ
(1)
n + eθ

(2)
n , with θ(i)

n given by equation (2.7) and p1 < p2, then wn is given by

wn = 1
2 (p1 + p2) + 1

2 (p1 − p2) tanh 1
2

(
θ(1)
n − θ(2)

n

)
−→

{
p1 as x → ∞,

p2 as x → −∞,
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which leads to the one-soliton solution of the 2DTL equation:

Vn = −1

4
(p1 − p2)

(
1

p1
− 1

p2

)
sech2 1

2

(
θ(1)
n − θ(2)

n

)
. (2.14)

In the x–n plane, this solution describes a plane wave u = �(k · x − ωt) with x = (x, n),
having wavenumber vector k = (kx, kn) and frequency ω given by

k = (p1 − p2, log p1 − log p2) =: k1,2, ω = 1

p1
− 1

p2
=: ω1,2.

The soliton parameters (k, ω) satisfy the dispersion relation ωkx + 2 cosh kn − 2 = 0. The
above one-soliton solution (2.14) is referred to as a line soliton, since in the x–n plane it is
localized around the (contour) line θ(1)

n = θ(2)
n . Since in this paper we are interested in the

pattern of soliton solutions in the x–n plane, we will refer to c = dx/dn as the velocity of the
line soliton in the x direction. (That is, c = 0 indicates the direction of the positive n-axis.)
For the soliton solution in equation (2.14), this velocity is c1,2, where

ci,j = −(log pi − log pj )/(pi − pj ). (2.15)

3. Resonance and web structure in the two-dimensional Toda lattice equation

We first consider (N−, 1)-soliton solutions, i.e., solutions obtained when N = 1. In particular,
we start with (2, 1)-soliton solutions (i.e., N = 1 and M = 3), whose τ function is given by

τn = eθ
(1)
n + eθ

(2)
n + eθ

(3)
n ,

with p1 < p2 < p3 without loss of generality. The corresponding function wn describes the
confluence of two shocks: two shocks for n → −∞ (each corresponding to a line soliton for
Vn) with velocities c1,2 and c2,3 merge into a single shock for n → ∞ with velocity c1,3, with
ci,j given by equation (2.15) in all cases. This Y-shape interaction represents a resonance
of three line solitons. The resonance conditions for three solitons with wavenumber vectors
{ki,j | 1 � i < j � 3} and frequencies {ωi,j | 1 � i < j � 3} are given by

k1,2 + k2,3 = k1,3, and ω1,2 + ω2,3 = ω1,3, (3.1)

which are trivially satisfied by those line solitons. We should point out that this solution is also
the resonant case of the ordinary two-soliton solution of the 2DTL equation. As mentioned
earlier, ordinary two-soliton solutions are given by the N = 2τ function (2.4) with (2.6). The
explicit form of the τ (2)

n function is

τ (2)
n = (p1 − p3) eθ

(1,3)
n + (p1 − p4) eθ

(1,4)
n + (p2 − p3) eθ

(2,3)
n + (p2 − p4) eθ

(2,4)
n ,

where for brevity we introduced the notation θ
(i,j)
n = θ(i)

n + θ
(j)
n , and where θ(i)

n is given by
equation (2.7), as before. Note that if p2 = p3, the τ (2)

n function can be written as

τ (2)
n = eθ

(1)
n +θ

(2)
n +θ

(4)
n
[
(p1 − p3)� e−θ

(4)
n + (p1 − p4) e−θ

(2)
n + (p2 − p4) e−θ

(1)
n
]
,

where � = exp
(
θ

(3)
0 − θ

(2)
0

) = constant. Since the exponential factor eθ
(1)
n +θ

(2)
n +θ

(4)
n gives zero

contribution to the solution Vn = ∂t∂x log τ (2)
n , the above τ (2)

n function is equivalent to a
(2, 1)-soliton solution except for the signs of the phases (more precisely, it is a (1, 2)-soliton).
Note also that the condition p2 = p3 is nothing else but the resonance condition, and it
describes the limiting case of an infinite phase shift in the ordinary two-soliton solution, where
the phase shift between the solitons as n → ±∞ is given by

δ = (p1 − p3)(p2 − p4)/[(p2 − p3)(p1 − p4)]. (3.2)
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The resonance process for the (N−, 1)-soliton solutions of the 2DTL equation can be expressed
as a generalization of the confluence of shocks discussed above (cf [1]).

We next consider more general (N−, N+)-soliton solutions. Following [1], we can describe
the asymptotic pattern of the solution in the general case N �= 1 by introducing a local
coordinate frame (ξ, n) in order to study the asymptotics for large |n|, with

x = cn + ξ.

The phase functions θ(i)
n in f in equation (2.7) then become

θ(i)
n = piξ + ηi(c)n + θ

(i)
0 , for i = 1, . . . , M,

with

ηi(c) := pi(c + (1/pi) log pi).

Without loss of generality, we assume an ordering for the parameters {pi | i = 1, . . . ,M}:
0 < p1 < p2 < · · · < pM . Then one can easily show that the lines η = ηi(c) are in general
position; that is, each line η = ηi(c) intersects with all other lines at M − 1 distinct points in
the c–η plane; in other words, only two lines meet at each intersection point.

The goal is now to find the dominant exponential terms in the τ (N)
n function (2.11) for

n → ±∞ as a function of the velocity c. First note that if only one exponential is dominant,
then wn = ∂x log τ (N)

n is just a constant, and therefore the solution Vn = ∂twn is zero. Then,
nontrivial contributions to Vn arise when one can find two exponential terms which dominate
over the others. Note that because the intersections of the ηi are always pairwise, three or more
terms cannot make a dominant balance for large |n|. In the case of (N−, 1)-soliton solutions,
it is easy to see that at each c the dominant exponential term for n → ∞ is provided by only
η1 and/or ηM , and therefore there is only one shock (N+ = 1) moving with velocity c1,M

corresponding to the intersection point of η1 and ηM . On the other hand, as n → −∞, each
term ηj can become dominant for some c, and at each intersection point ηj = ηj+1 the two
exponential terms corresponding to ηj and ηj+1 give a dominant balance; therefore there are
N− = M − 1 shocks moving with velocities cj,j+1 for j = 1, . . . , M − 1.

In the general case, N �= 1, the τ (N)
n function in (2.11) involves exponential terms having

combinations of phases. In this case the exponential terms that make a dominant balance can
be found using the same methods as in [1]. Let us first define the level of intersection of the
ηi(c). Note that ci,j in equation (2.15) identifies the intersection point of ηi(c) and ηj (c), i.e.,
ηi(ci,j ) = ηj (ci,j ).

Definition 3.1. We define the level of intersection, denoted by σi,j , as the number of other ηl

that are larger than ηi(ci,j ) = ηj (ci,j ) at c = ci,j . That is,

σi,j := |{ηl | ηl(ci,j ) > ηi(ci,j ) = ηj (ci,j )}|.
We also define I (n) as the set of pairs (ηi, ηj ) having the level σi,j = n, namely

I (n) := {(ηi, ηj ) | σi,j = n, for i < j}.

The level of intersection lies in the range 0 � σi,j � M − 2. Note also that the total number
of pairs (ηi, ηj ) is(

M

2

)
= 1

2
M(M − 1) =

M−2∑
n=0

|I (n)|.
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One can show that

Lemma 3.2. The set I (n) is given by

I (n) = {(ηi, ηM−n+i−1) | i = 1, . . . , n + 1}.

Proof. From the assumption q1 < q2 < · · · < qM , we have the following inequality at c = ci,j

(i.e. ηi = ηj ) for i < j ,

ηi+1, . . . , ηj−1 < ηi = ηj < η1, . . . , ηi−1, ηj+1, . . . , ηM.

Then taking j = M − n − 1 leads to the assertion of the lemma. �

Now define N+ = N and N− = M −N . The above lemma indicates that, for each intersecting
pair (ηi, ηj ) with the level N− − 1 (N+ − 1), there are N+ − 1 terms ηl which are smaller
(larger) than ηi = ηj . Then the sum of those N+ − 1 terms with either ηi or ηj provides two
dominant exponents in the τ (N)

n function for n → −∞(n → ∞) (see more detail in the proof
of theorem 3.3). Note also that |I (N± − 1)| = N∓. Now we can state our main theorem:

Theorem 3.3. Let wn be defined by equation (2.12), with τ (N)
n given by equation (2.11). Then

wn has the following asymptotics for n → ±∞:

(i) For n → −∞ and x = ci,N++in + ξ for i = 1, . . . , N−,

wn −→
{
Ki(+,−) := ∑N+i

j=i+1 pj as ξ → ∞,

Ki(−,−) := ∑N+i−1
j=i pj as ξ → −∞.

(ii) For n → ∞ and x = ci,N−+in + ξ for i = 1, . . . , N+,

wn −→
{
Ki(+, +) := ∑i−1

j=1 pj +
∑N−i+1

j=1 pM−j+1 as ξ → ∞,

Ki(−, +) := ∑i
j=1 pj +

∑N−1
j=1 pM−j+i as ξ → −∞.

where ci,j is given by equation (2.15).

Proof. First note that at the point ηi = ηN+i , i.e., (ηi, ηN+i ) ∈ I (N− − 1), from lemma 3.2 we
have the inequality,

ηi+1, ηi+2, . . . , ηi+N−1︸ ︷︷ ︸
N−1

< ηi = ηN+i .

This implies that, for c = −(log pN+i − log pi)/(pN+i − pi), the following two exponential
terms in the τ (N)

n function in lemma 2.1,

exp


N+i−1∑

j=i

θ (j)
n


 , exp


 N+i∑

j=i+1

θ(j)
n


 ,

provide the dominant terms for n → −∞. Note that the condition ηi = ηN+i leads to
c = ci,N+i = −(log pN+i − log pi)/(pN+i − pi). Thus the function wn can be approximated
by the following form along x = ci,N+in + ξ for n → −∞:

wn ∼ ∂

∂ξ
log(�i(−,−) eKi(−,−)ξ + �i(+,−) eKi(+,−)ξ )

= Ki(−,−)�i(−,−) eKi(−,−)ξ + Ki(+,−)�i(+,−) eKi(+,−)ξ

�i(−,−) eKi(−,−)ξ + �i(+,−) eKi(+,−)ξ
,

= Ki(−,−)�i(−,−) e(pi−pN+i )ξ + Ki(+,−)�i(+,−)

�i(−,−) e(pi−pN+i )ξ + �i(+,−)
,
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where

�i(−,−) = �(i, . . . , N + i − 1) exp


N+i−1∑

j=i

θ
(j)

0




�i(+,−) = �(i + 1, . . . , N + i) exp


 N+i∑

j=i+1

θ
(j)

0


 .

Now, from pi < pN+i it is obvious that wn has the desired asymptotics as ξ → ±∞ for
n → −∞.

Similarly, for the case of (ηi, ηN−+i ) ∈ I (N+ − 1) we have the inequality

ηi = ηN−+i < η1, η2, . . . , ηi−1, ηN−+i+1 . . . , ηM︸ ︷︷ ︸
N−1

.

Then the dominant terms in the τ (N)
n function on x = ci,N−+in + ξ for n → ∞ are given by the

exponential terms

exp


 i∑

j=1

θ(j)
n +

N−i∑
j=1

θ(M−j+1)
n


 , exp


 i−1∑

j=1

θ(j)
n +

N−i+1∑
j=1

θ(M−j+1)
n


 .

Then, following the same argument as before, we obtain the desired asymptotics as ξ → ±∞
for n → ∞.

For other values of c, that is for c �= ci,N++i and c �= ci,N−+i , just one exponential term is
dominant, and thus wn approaches a constant as |n| → ∞. This completes the proof. �

Theorem 3.3 determines the complete structure of asymptotic patterns of the solutions
Vn(x, t) given by (2.10). Indeed, theorem 3.3 can be summarized as follows: as n → −∞, the
function wn has N− jumps, moving with velocities cj,N++j for j = 1, . . . , N−; as n → ∞, wn

has N+ jumps, moving with velocities ci,N−+i for i = 1, . . . , N+. Since each jump represents
a line soliton for Vn(x, t), the whole solution therefore represents an (N−, N+)-soliton.
The velocity of each of the asymptotic line solitons in the (N−, N+)-soliton is determined
from the c–η graph of the levels of intersections. As an example, in figure 1 we show a
(2, 1)-soliton solution (also called a Y-shape solution, or a Y-junction), a (2, 2)-soliton solution,
a (2, 3)-soliton solution and a (3, 3)-soliton solution.

Note that, given a set of M phases (as determined by the parameters pi for i = 1, . . . , M),
the same graph can be used for any (N−, N+)-soliton with N− + N+ = M . In particular, if
M = 2N , we have N+ = N− = N , and theorem 3.3 implies that the velocities of the N

incoming solitons are equal to those of the N outgoing solitons. In the case of the ordinary
multi-soliton solution of the 2DTL equation, the τ function (2.4) does not contain all the
possible combinations of phases and therefore the theorem should be modified. However, the
key idea of using the levels of intersection for the asymptotic analysis is still applicable. In fact,
by considering the τ (N)

n function given by the Casorati determinant (2.4) with fi = eθ
(2i−1)
n + eθ

(2i)
n

for i = 1, . . . , N and p1 < p2 < · · · < p2N , one can find the asymptotic velocities for the
ordinary N -soliton solutions as c2i−1,2i = −(log p2i − log p2i−1)/(p2i − p2i−1). Note that
these velocities are different from those of the resonant N -soliton solutions.

Note also that even when N+ = N− = N , the interaction pattern of resonant soliton
solutions differs from that of ordinary N -soliton solutions. As seen from figure 1, the resonant
solutions of the 2DTL obtained from equation (2.10) are very similar to the solitons of the KP
and coupled KP equation [1, 4, 5], where such solutions were called ‘spider-web’ solitons.
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Figure 1. Resonant solutions of the two-dimensional Toda lattice: (a) (2, 1)-soliton solution (i.e., a
Y-junction) at t = 0, with N = 1,M = 3, p1 = 1/4, p2 = 1/2, p3 = 2; (b) (2, 2)-soliton solution
at t = 14, with N = 2,M = 4, p1 = 1/8, p2 = 1/2, p3 = 1 and p4 = 4; (c) (3, 2)-soliton
solution at t = 10, with N = 2, M = 5, p1 = 1/10, p2 = 1/5, p3 = 1/2, p4 = 1 and p5 = 6;
(d) (3, 3)-soliton solution at t = 14, with N = 3, M = 6, p1 = 1/10, p2 = 1/4, p3 = 1/2 and
p4 = 1, p5 = 2, p6 = 4. In all cases the horizontal axis is n and the vertical axis is x, and each
figure is a plot of q(n, x, t) in logarithmic greyscale. Note that the values of n in the horizontal
axis are discrete.

(In contrast, an ordinary N -soliton solution produces a simple pattern of N intersecting lines.)
The web structure manifests itself in the number of bounded regions, the number of vertices and
the number of intermediate solitons, which are respectively (N− − 1)(N+ − 1), 2N−N+ − M

and 3N−N+ − 2M for an (N−, N+)-soliton solution [1]. (In contrast, an ordinary N -soliton
solution has (N−1)(N − 2)/2 bounded regions and N(N−1)/2 interaction vertices.) Finally,
it should be noted that, as in the KP equation, only the Y-shape solution is a travelling wave
solution. All other resonant solutions (as well as ordinary N -soliton solutions with N � 3)
have a time-dependent shape, as shown in [1].

4. The fully discrete 2D Toda lattice equation

The 2DTL equation (2.1) is a differential-difference evolution equation, since only one of the
independent variables is discrete, while the other two are continuous. Hereafter, we refer to
equation (2.1) as a semi-continuous case. We now consider a fully discrete analogue of the
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2DTL equation (2.1), namely

�+
l �

−
mQl,m,n = Vl,m−1,n+1 − Vl+1,m−1,n − Vl,m,n + Vl+1,m,n−1,

(4.1)
Vl,m,n = (δκ)−1 log[1 + δκ(exp Ql,m,n − 1)],

with l, m, n ∈ Z, l and m being the discrete analogues of the time t and space x coordinates,
respectively, and where �+

l and �−
m are the forward and backward difference operators

defined by

�+
l fl,m,n = fl+1,m,n − fl,m,n

δ
, (4.2)

�−
mfl,m,n = fl,m,n − fl,m−1,n

κ
. (4.3)

Equation (4.1), which is the discrete analogue of equation (2.1), can be written in bilinear
form [2] in a manner similar to equation (2.2):(
�+

l �
−
mτl,m,n

)
τl,m,n − (

�+
l τl,m,n

)
�−

mτl,m,n = τl,m−1,n+1τl+1,m,n−1 − τl+1,m−1,nτl,m,n, (4.4)

with Ql,m,n related to τl,m,n by the transformation Vl,m,n = �+
l �

−
m log τl,m,n, i.e.,

Ql,m,n = log
τl+1,m+1,n−1τl,m,n+1

τl+1,m,nτl,m+1,n

. (4.5)

Note that Ql,m,n = log[1 + (eδκVl,m,n − 1)/δκ]. Special solutions of equation (4.4) (which is
the discrete analogue of equation (2.2)) are obtained when the τ function τl,m,n is expressed
in terms of a Casorati determinant τl,m,n = τ

(N)
l,m,n as [2]

τ
(N)
l,m,n =

∣∣∣∣∣∣∣∣∣∣∣

f
(1)
l,m,n f

(1)
l,m,n+1 · · · f

(1)
l,m,n+N−1

f
(2)
l,m,n f

(2)
l,m,n+1 · · · f

(2)
l,m,n+N−1

...
...

...

f
(N)
l,m,n f

(N)
l,m,n+1 · · · f

(N)
l,m,n+N−1

∣∣∣∣∣∣∣∣∣∣∣
, (4.6)

where each of the functions
{
f

(i)
l,m,n, i = 1, 2, . . . , N

}
satisfies the following discrete dispersion

relations:

�+
l fl,m,n = fl,m,n+1, (4.7)

�−
mfl,m,n = −fl,m,n−1. (4.8)

If we take as a solution for equations (4.7) and (4.8) the functions

f
(i)
l,m,n = φ(pi) + φ(qi), (4.9)

with

φ(p) = pn(1 + δp)l(1 + κp−1)−m, (4.10)

the τ function (4.6) yields an N -soliton solution for the discrete 2DTL equation (4.4).
As in the semi-continuous 2DTL, however, solutions of equation (4.4) can also be obtained

when we consider the τ function defined by the Hankel determinant

τ
(N)
l,m,n =

∣∣∣∣∣∣∣∣∣∣

fl,m,n fl,m,n+1 · · · fl,m,n+N−1

fl,m,n+1 fl,m,n+2 · · · fl,m,n+N

...
...

...

fl,m,n+N−1 fl,m,n+N · · · fl,m,n+2N−2

∣∣∣∣∣∣∣∣∣∣
, (4.11)
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where

fl,m,n =
M∑
i=1

αiφ(pi), (4.12)

which corresponds to choosing

f
(i)
l,m,n = fl,m,n+i−1, (4.13)

for i = 1, . . . , N . Without loss of generality, we can label the parameters pi so that
0 < p1 < p2 < · · · < pM−1 < pM . Then, as in the semi-continuous 2DTL, we have
the following:

Lemma 4.1. Let fl,m,n be given by equation (4.13). Then, for 1 � N � M −1, the τ function
defined by the Hankel determinant (4.11) has the form

τ (N)
n =

∑
1�i1<···<iN �M

�(i1, . . . , iN )

N∏
j=1

αij φ
(
pij

)
(4.14)

where �(i1, . . . , iN ) is the square of the van der Monde determinant,

�(i1, . . . , iN ) =
∏

1�j<l�N

(
pij − pil

)2
. (4.15)

Proof. Again, the result follows by applying the Binet–Cauchy theorem to the Hankel
determinant (4.11). �

Unlike its counterpart in the semi-continuous 2DTL equation, the τ function in
equation (4.11) cannot be written in terms of a Wronskian, since no derivatives appear.
However, as in the semi-continuous 2DTL equation, the τ function thus defined is positive
definite, and therefore all the solutions generated by it are non-singular. In the next section
we show that, like its analogue in the semi-continuous 2DTL equation, the above τ function
produces soliton solutions of resonant type with web structure, and we conjecture that, like in
the continuous case, an (N−, N+)-soliton with N− = M − N and N+ = N is created.

Like with the semi-continuous 2DTL equation, however, before discussing resonant
solutions it is convenient to first look at one-soliton solutions of the fully discrete
2DTL equation. Let us introduce the analogue of equation (2.12), namely the function

wl,m,n = log
τl,m+1,n−1

τl,m,n

, (4.16)

so that the solution of the discrete 2DTL equation is given by

Ql,m,n = log
τl+1,m+1,n−1τl,m,n+1

τl+1,m,nτl,m+1,n

= wl+1,m,n − wl,m,n+1. (4.17)

It is also useful to rewrite the function φ(pi) in equations (4.10), (4.12) as φ(pi) = eθ
(i)
l,m,n ,

where

θ
(i)
l,m,n = n log pi − m log

(
1 + κp−1

i

)
+ l log(1 + δpi) + θ

(i)
0 . (4.18)

If τn = eθ
(1)
l,m,n + eθ

(2)
l,m,n , with p1 < p2, then wl,m,n is given by

wl,m,n = log 1
2

(
p−1

1

(
1 + κp−1

1

)−1
+ p−1

2

(
1 + κp−1

2

)−1)
+ 1

2

(
p−1

1

(
1 + κp−1

1

)−1 − p−1
2

(
1 + κp−1

2

)−1)
tanh 1

2

(
θ

(1)
l,m,n − θ

(2)
l,m,n

)
−→

{−log p1 −log
(
1 + κp−1

1

)
as n → ∞,

−log p2 −log
(
1 + κp−1

2

)
as n → −∞,
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which leads to the one-soliton solution of the discrete 2DTL equation. In the n–m plane,
this solution describes a plane wave exp(Ql,m,n) = �(k · x − ωl) with x = (n,m), having
wavenumber vector k = (kn, km) and frequency ω given by

k = (
log p1 − log p2,−log

(
1 + κp−1

1

)
+ log

(
1 + κp−1

2

)) =: k1,2,

ω = −log(1 + δp1) + log(1 + δp2) =: ω1,2.

The soliton parameters (k, ω) now satisfy the discrete dispersion relation (e−ω − 1)

(1 − e−km) = δκ(e−km+kn + e−ω−kn − e−ω−km − 1). The one-soliton solution (4.17) is
referred to as a line soliton since, like its semi-continuous analogue, it is localized around the
(contour) line θ

(1)
l,m,n = θ

(2)
l,m,n in the n–m plane. Again, we will refer to c = dn/dm as the

velocity of the line soliton in the n direction. For the above line soliton solution, this velocity
is given by c1,2, where now

ci,j = (
log
(
1 + κp−1

i

)− log
(
1 + κp−1

j

))/
(log pi − log pj ). (4.19)

5. Resonance and web structure in the discrete 2D Toda lattice equation

As in the semi-continuous case, we first consider (N−, 1)-soliton solutions, i.e., solutions
obtained in the case N = 1, and in particular we start from (2, 1)-soliton solutions (i.e., the
case N = 1 and M = 3), whose τ function is given by

τn = eθ
(1)
l,m,n + eθ

(2)
l,m,n + eθ

(3)
l,m,n ,

with θ
(i)
l,m,n given by equation (4.18), and where p1 < p2 < p3 without loss of generality.

As in the continuous case, this solution describes the confluence of two shocks: two shocks
for m → −∞ (each corresponding to a line soliton for Ql,m,n) with velocities c1,2 and
c1,3 merge into a single shock for m → ∞ with velocity c1,3, where ci,j is given by
equation (4.19) in all cases. This Y-shape interaction represents a resonance of three
line solitons. The resonance conditions for three solitons with the wavenumber vectors
{ki,j | 1 � i < j � 3} and the frequencies {ωi,j | 1 � i < j � 3} are still given by
equation (3.1), and again are trivially satisfied by those line solitons. Furthermore, this
solution is also the resonant case of the ordinary two-soliton solution of the discrete 2DTL
equation, arising in the limit of an infinite phase shift. The resonance process for the (N−, 1)-
soliton solutions of the discrete 2DTL equation can be expressed as a generalization of the
confluence of shocks discussed earlier.

Next we consider more general (N−, N+)-soliton solutions. Following [1] and the semi-
continuous case, we can describe the asymptotic pattern of the solution by introducing a local
coordinate frame (ξ,m) in order to study the asymptotics for large |m| with

n = cm + ξ.

Then the phase functions θ
(i)
l,m,n become

θ
(i)
l,m,n = ξ log pi + ηi(c)m + θ

(i)
0 , for i = 1, . . . ,M,

with

ηi(c) := log pi

(
c − log

(
1 + κp−1

i

)/
log pi

)
.

Without loss of generality, we assume an ordering for the parameters {pi | i = 1, . . . ,M}:
0 < p1 < p2 < · · · < pM . Then, as in the semi-continuous case, one can easily show
that the lines η = ηi(c) are in general position. As before, the goal is then to find the
dominant exponential terms in the τ

(N)
l,m,n function (4.14) for m → ±∞ as a function of
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the velocity c. First note that if only one exponential is dominant, then wl,m,n =
log
(
τ

(N)
l,m+1,n−1

/
τ

(N)
l,m,n

)
is just a constant, and therefore the solution Ql,m,n = wl+1,m,n−wl,m,n+1

is zero. Then, as in the semi-continuous case, nontrivial contributions to Ql,m,n arise when
one can find two exponential terms which dominate over the others. Also, as in the semi-
continuous case, since the intersections of the ηi are always pairwise, three or more terms
cannot make a dominant balance for large |m|. For (N−, 1)-soliton solutions, it is easy to
see that at each c the dominant exponential term for m → ∞ is provided by only η1 and/or
ηM , and therefore there is only one shock (N = 1) moving with velocity c1,M corresponding
to the intersection point of η1 and ηM . On the other hand, as m → −∞, each term ηj can
become dominant for some c, and at each intersection point ηj = ηj+1 the two exponential
terms corresponding to ηj and ηj+1 give a dominant balance; therefore there are N− = M − 1
shocks moving with velocities cj,j+1 for j = 1, . . . ,M − 1.

In the general case, N �= 1, the τ
(N)
l,m,n function in (4.14) involves exponential terms having

combinations of phases, and two exponential terms that make a dominant balance, can be found
in a similar way as in the semi-continuous case. We define again the level of intersection of
the ηi(c). Again, ci,j in equation (4.19) identifies the intersection point of ηi(c) and ηj (c),
i.e., ηi(ci,j ) = ηj (ci,j ).

Definition 5.1. We define the level of intersection, denoted by σi,j , as the number of other ηl

that at c = ci,j are larger than ηi(ci,j ) = ηj (ci,j ). That is,

σi,j := |{ηl | ηl(ci,j ) > ηi(ci,j ) = ηj (ci,j )}|.
We also define I (n) as the set of pairs (ηi, ηj ) having the level σi,j = n, namely

I (n) := {(ηi, ηj ) | σi,j = n, for i < j}.

As in the semi-continuous case, one can then show the following:

Lemma 5.2. The set I (n) is given by

I (n) = {(ηi, ηM−n+i−1) | i = 1, . . . , n + 1}.

Proof. See the proof of lemma 3.2. �

As in the semi-continuous case, let N+ = N and N− = M − N . The above lemma indicates
that, for each intersecting pair (ηi, ηj ) with the level N− − 1 (N − 1), there are N+ − 1 terms
ηl which are smaller (larger) than ηi = ηj . Then the sum of those N+ − 1 terms with either ηi

or ηj provides two dominant exponents in the τ
(N)
l,m,n function for m → −∞(m → ∞). We

then have the following:

Theorem 5.3. Let wl,m,n be a function defined by equation (4.16), with τ
(N)
l,m,n given by

equation (4.14). Then wl,m,n has the following asymptotics for m → ±∞:

(i) For m → −∞ and n = ci,N++im + ξ for i = 1, . . . , N−,

wl,m,n −→


Ki(+,−) := ∑N+i

j=i+1 log pj as ξ → ∞,

Ki(−,−) := ∑N+i−1
j=i log pj as ξ → −∞.

(ii) For m → ∞ and n = ci,N−+im + ξ for i = 1, . . . , N+,

wl,m,n −→


Ki(+, +) := ∑i−1

j=1 log pj +
∑N−i+1

j=1 log pM−j+1 as ξ → ∞,

Ki(−, +) := ∑i
j=1 log pj +

∑N−1
j=1 log pM−j+i as ξ → −∞,

where ci,j is given by equation (4.19).
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Figure 2. Resonant solutions of the fully discrete two-dimensional Toda lattice: (a) (2, 1)-soliton
solution (i.e., a Y-junction) at l = 0, with p1 = 1/10, p2 = 1/2, p3 = 10, (b) (2, 2)-soliton
solution at l = 40, with p1 = 1/10, p2 = 1/2, p3 = 2, p4 = 15; (c) (3, 2)-soliton solution
at l = 80, with p1 = 1/20, p2 = 1/2, p3 = 2, p4 = 10, p5 = 60; (d ) (3, 3)-soliton solution
at l = 80, with p1 = 1/20, p2 = 1/2, p3 = 2, p4 = 10, p5 = 20, p6 = 120. In all cases
δ = κ = 1/4; the horizontal axis is n and the vertical axis is n and each figure is a plot of Ql,m,n

in logarithmic greyscale. Note that the values of both m and n in the horizontal and vertical axes
are discrete.

Proof. Once the obvious modifications are made, the proof proceeds exactly like in the
semi-continuous case, namely theorem 3.3. �

Like its counterpart in the semi-continuous case, theorem 5.3 determines the complete
structure of asymptotic patterns of the solutions Ql,m,n given by (4.11). Indeed, theorem 5.3
can be summarized as follows: as m → −∞, the function wl,m,n has N− jumps, moving
with velocities cj,N++j for j = 1, . . . , N−; as m → ∞, wl,m,n has N+ jumps, moving with
velocities ci,N−+i for i = 1, . . . , N+. Since each jump represents a line soliton of Ql,m,n,
the whole solution therefore represents an (N−, N+)-soliton. The velocity of each of the
asymptotic line solitons in the (N−, N+)-soliton is determined from the c–η graph of the levels
of intersections. Note that, given a set of M phases (as determined by the parameters pi for
i = 1, . . . , M), the same graph can be used for any (N−, N+)-soliton with N− + N+ = M .
As an example, in figure 2 we show a (2, 1)-soliton solution, a (2, 2)-soliton solution, a
(2, 3)-soliton solution and a (3, 3)-soliton solution.

In particular, if M = 2N , we have N+ = N− = N , and theorem 5.3 implies that the
velocities of the N incoming solitons are equal to those of the N outgoing solitons. In the
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case of the ordinary multi-soliton solutions of the discrete 2DTL equation, the τ function (4.6)
does not contain all the possible combinations of phases and therefore theorem 5.3 should be
modified. However, as in the semi-continuous case, the idea of using the levels of intersection
is still applicable, and one can find that the asymptotic velocities for the ordinary N -solitons
generated by the Casorati determinant (4.6) with fi = eθ

(2i−1)
n + eθ

(2i)
n (i = 1, . . . , N) and

p1 < p2 < · · · < p2N are c2i−1,2i = (
log
(
1+κp−1

2i

)−log
(
1+κp−1

2i−1

))/
(log p2i − log p2i−1).

Note that, like in the semi-continuous case, these velocities are different from those of the
resonant N -soliton solutions.

The resonant solutions of the fully discrete 2DTL provide the basis for the construction
of the resonant solution of the ultra-discrete 2DTL, as is shown in the next two sections.

6. The ultra-discrete two-dimensional Toda lattice

We now turn our attention to an ultra-discrete analogue of the 2DTL equation. Using
equations (4.2) and (4.3), we first write the 2DTL equation (4.4) in bilinear form as

(1 − δκ)τl+1,m,nτl,m+1,n − τl+1,m+1,nτl,m,n + δκτl,m,n+1τl+1,m+1,n−1 = 0. (6.1)

We define the difference operator �′ as

�′ = e−∂n
(
�+

n − �+
l

)(
�+

n − �+
m

)
, (6.2)

where from here on the symbols �+
l , �

+
m and �+

n will be used to denote the difference operators

�+
l = e∂l − 1, �+

m = e∂m − 1, �+
n = e∂n − 1, (6.3)

and where the shift operators e∂l , e∂m and e∂n are defined by e∂nfl,m,n = fl,m,n+1, etc. That is,

�′fl,m,n = fl+1,m+1,n−1 + fl,m,n+1 − fl+1,m,n − fl,m+1,n. (6.4)

Using equations (6.3) and (6.2), we can rewrite equation (6.1) as

(1 − δκ) + δκ exp[�′ log τl,m,n] = exp
[
�+

l �
+
m log τl,m,n

]
, (6.5)

which becomes, taking a logarithm and applying �′ (assuming δκ �= 1),

�′ log

[
1 +

δκ

1 − δκ
exp(�′ log τl,m,n)

]
= �+

l �
+
m�′ log τl,m,n. (6.6)

We now take an ultra-discrete limit of equation (6.6) following equation (2.1) [9, 10]. This is
accomplished by choosing the lattice intervals as

δε = e−r/ε, κε = e−s/ε, (6.7)

where r, s ∈ Z�0 are some predetermined integer constants, and by defining

vε
l,m,n = �′ε log τ ε

l,m,n. (6.8)

Taking the limit ε → 0+ in equation (6.6) and noting that limε→0+ ε log(1+eX/ε) = max(0, X),
we then obtain

�+
l �

+
mvl,m,n = �′ max(0, vl,m,n − r − s), (6.9)

where vl,m,n = limε→0+vε
l,m,n. That is, using equation (6.8),

vl,m,n = �′ lim
ε→0+

ετ ε
l,m,n. (6.10)

Equation (6.9) is the ultra-discrete analogue of the 2DTL equation and can be considered a
cellular automaton in the sense that vl,m,n takes on integer values.
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Let us briefly discuss ordinary soliton solutions of the ultra-discrete 2DTL equation (6.9).
As shown in [9, 10], soliton solutions for the ultra-discrete 2DTL equation (6.9) are obtained
by an ultra-discretization of the soliton solution of the discrete 2DTL equation (4.4). For
example, a one-soliton solution for equation (4.4) is given by

τl,m,n = 1 + η1, (6.11)

with

ηi = αi

φ(pi)

φ(qi)
, (6.12)

and where

φ(p) = pn(1 + δp)l(1 + κp−1)−m (6.13)

as before. We introduce a new dependent variable

ρε
l,m,n = ε log τl,m,n, (6.14)

and new parameters P1,Q1, A1 ∈ Z as

eP1/ε = p1, eQ1/ε = q1, eA1/ε = α1. (6.15)

Taking the limit ε → 0+, we then obtain

ρl,m,n = max(0,�1), (6.16)

where

�i = Ai + n(Pi − Qi) + l{max(0, Pi − r) − max(0,Qi − r)}
+ m{max(0,−Qi − s) − max(0,−Pi − s)}, (6.17)

with e−r/ε = δ and e−s/ε = κ as before, and where ρl,m,n = limε→0+ ρε
l,m,n. According to

equations (6.10) and (6.14), the one-soliton solution for equation (6.9) is then given by

vl,m,n = ρl+1,m+1,n−1 + ρl,m,n+1 − ρl+1,m,n − ρl,m+1,n. (6.18)

Using a similar procedure we can construct a two-soliton solution. Equation (4.4) admits
a two-soliton solution given by

τl,m,n = 1 + η1 + η2 + θ12η1η2, (6.19)

with

θ12 = (p2 − p1)(q1 − q2)

(q1 − p2)(q2 − p1)
, (6.20)

and where ηi = αiφ(pi)/φ(qi) as before (i = 1, 2). In order to take the ultra-discrete limit of
the above solution, we suppose without loss of generality that the soliton parameters satisfy
the inequality

0 < p1 < p2 < q2 < q1. (6.21)

Introducing again the dependent variable ρε
l,m,n = ε log τl,m,n, as well as integer parameters

Pi,Qi and Ai as

ePi/ε = pi, eQi/ε = qi, eAi/ε = αi (6.22)

(i = 1, 2), and taking the limit of small ε, we obtain

ρl,m,n = max(0,�1,�2,�1 + �2 + P2 − Q2), (6.23)

where �i (i = 1, 2) was defined in equation (6.17), with ρl,m,n = limε→0+ ρε
l,m,n again, and

where vl,m,n is obtained from ρl,m,n using equation (6.18). Note that P1 < P2 < Q2 < Q1.



11834 K-i Maruno and G Biondini

More in general, starting from equations (4.6) and (4.9) (with 0 < p1 < p2 < · · · <

pM < qM < qN−1 < · · · < q1) and repeating the same construction, one obtains the N-soliton
solution of the ultra-discrete 2DTL equation (6.9) as [10]

ρl,m,n = max
µ=0,1


 ∑

1�i�M

µi�i +
∑

1�i<i ′�M

µiµi ′(Pi ′ − Qi ′)


 (6.24)

where maxµ=0,1 indicates maximization over all possible combinations of the integers
µi = 0, 1, with i = 1, . . . , M . Again, vl,m,n is obtained from ρl,m,n via equation (6.18).

Ordinary soliton solutions corresponding to the above choices were presented in [9, 10].
In the next section we show how this basic construction can be generalized to obtain resonant
soliton solutions.

7. Resonance and web structure in the ultra-discrete 2D Toda lattice equation

Following [1], we now construct more general solutions of the ultra-discrete 2DTL
equation (6.9) which display soliton resonance and web structure.

We first consider the case of a (2, 1)-soliton for equation (4.4), which is given by

τl,m,n = ξ1 + ξ2 + ξ3, (7.1)

where

ξi = αiφ(pi) (7.2)

(i = 1, 2, 3), with

φ(p) = pn(1 + δp)l(1 + κp−1)−m (7.3)

as before, and where again we take 0 < p1 < p2 < p3. As in the previous section, we
introduce the new dependent variable

ρε
l,m,n = ε log τl,m,n, (7.4)

and new parameters as

ePi/ε = pi, eAi/ε = αi (7.5)

(i = 1, 2, 3), with e−r/ε = δ and e−s/ε = κ as before. Taking the limit ε → 0+, we then obtain

ρl,m,n = max(R1, R2, R3) (7.6)

where ρl,m,n = limε→0+ ρε
l,m,n as before, but where now

Ri = Ai + nPi + l max(0, Pi − r) − m max(0,−Pi − s) (7.7)

(i = 1, 2, 3). Figure 3 shows that this solution, which again can be called a (2, 1)-soliton, is
a Y-shape solution. Note however that the (2, 1)-soliton in figure 3 looks like a (1, 2)-soliton,
in the sense that there are two solitons for large positive m and only one for large negative m.
In general, an (N−, N+)-soliton of the discrete 2DTL equation (4.1) leads to an
(N+, N−)-soliton of equation (6.9) when taking the ultra-discrete limit. We also note that,
interestingly, an L-shape solution can be obtained instead of a Y-shape solution for different
solution parameters. An example of such an L-shape soliton is shown in figure 4. No analogue
of this solution exists in the 2DTL and its fully discrete version.

Next, we consider the case of a (2, 2)-soliton for equation (4.4) following [1]. Let us
consider the following τ function,

τl,m,n =
∣∣∣∣ fl,m,n fl,m,n+1

fl,m,n+1 fl,m,n+2

∣∣∣∣ , (7.8)
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........22....
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..........5...
..........4...

0 n

Figure 3. A (2, 1)-resonant soliton solution (i.e., a Y-junction) for the ultradiscrete 2DTL
equation (6.9), with P1 = −5, P2 = 1, P3 = 4, r = 3, s = 1, A1 − A3 = 1, A2 − A3 = 1.
From left to right, the four plots represent the solution respectively at l = 0, l = 2, l = 4 and
l = 6. The dots indicate zero values of vl,m,n.
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Figure 4. An L-shape (2, 1)-resonant soliton solution for equation (6.9), with P1 = −5, P2 =
−1, P3 = 4, r = 3, s = 1, A1 − A3 = 1, A2 − A3 = 1. From left to right, the four plots represent
the solution respectively at l = 0, l = 2, l = 4 and l = 6.

where

fl,m,n = ξ1 + ξ2 + ξ3 + ξ4, (7.9)

where ξi (i = 1, . . . , 4) is again defined as in equation (7.3), and where 0 < p1 < p2 <

p3 < p4 holds. We introduce again the new parameters ePk/ε = pk and eAk/ε = αk

(k = 1, . . . , 4) and the new dependent variable ρε
l,m,n = ε log τl,m,n. Taking the limit ε → 0+,

we then obtain

ρl,m,n = max
1�i<j�4

(Kij + 2Pj ), (7.10)

where ρl,m,n = limε→0+ ρε
l,m,n, as before, and

Kij = Ri + Rj , (7.11)

and with Rj given by equation (7.7) as before. Figure 5 shows the temporal evolution of a
(2, 2)-soliton solution. Note the appearance of a hole in figure 5.

Like in the 2DTL (2.1) and its fully discrete version (4.1), we now consider more general
resonant solutions for the ultra-discrete 2DTL (6.9). We start from the general τ function
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(a) (b)

(c) (d)

Figure 5. Snapshots illustrating the temporal evolution of a (2, 2)-resonant soliton solution for
equation (6.9), with P1 = −7, P2 = −5, P3 = 1, P4 = 3, r = 4, s = 2, A1 = −10, A2 =
−6, A3 = 0, A4 = 2: (a) l = −12; (b) l = −7; (c) l = 4; (d) l = 7. As in figures 3 and 4, the
horizontal axis is n and the vertical axis is m. Since the interaction extends over a wider range of
values of m and n, the solution is now plotted in greyscale, in a similar way as in figures 1 and 2;
the values of vl,m,n however are still discrete, as in figures 3 and 4.

defined in equation (4.11), and introduce again the parameters ePk/ε = pk and eAk/ε = αk

(k = 1, 2, . . . ,M) and the variable ρε
l,m,n = ε log τl,m,n, together with e−r/ε = δ and

e−s/ε = κ . Taking the limit ε → 0+, we then obtain the following solution of the ultra-discrete
2DTL (6.9):

ρl,m,n = max
1�i1<···<iN �M

[
N∑

j=1

Rij + 2
N∑

j=2

(j − 1)Pij

]
, (7.12)

where again limε→0+ ρε
l,m,n = ρl,m,n, with the maximum being taken among all possible

combinations of the indices ij (j = 1, . . . , N), and where once more we have

Ri = Ai + nPi + l max(0, Pi − r) − m max(0,−Pi − s). (7.13)

Equation (7.12) produces complicated soliton solutions displaying resonance and web
structure. As an example, in figures 6 and 7 we show some snapshots of the time evolution of
a (3, 3)-resonant soliton solution and a (4, 4)-resonant soliton solution. Indeed, we conjecture
that, similar to its counterparts for the 2DTL and in its fully discrete analogue, equation (7.12)
yields the (N−, N+)-soliton solution of the ultra-discrete 2DTL equation (6.9), with N+ = N
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(a) (b)

(c) (d)

Figure 6. Snapshots illustrating the temporal evolution of a (3, 3)-resonant soliton solution
for equation (6.9), with P1 = −10, P2 = −7, P3 = −5, P4 = −1, P5 = 4, P6 = 5,
r = 7, s = 4, A1 = −8, A2 = −6, A3 = 0, A4 = 2, A5 = 4, A6 = 7: (a) l = −15, (b) l = −10,
(c) l = 0, (d) l = 10.

and N− = M − N . Unlike the semi-continuous and fully discrete cases, however, we were
unable to prove this conjecture using the techniques introduced in [1]. In this respect, it should
be noted that solutions of the ultra-discrete 2DTL arise as a result of the properties of the
maximum function, and therefore their study might require the use of techniques from tropical
algebraic geometry, which is a subject of current research [13–15].

It should also be noted that the interaction patterns in the ultra-discrete system differ
somewhat from their analogues in the semi-continuous and fully discrete cases. In particular,
low-amplitude interaction arms may disappear when considering the ultra-discrete limit.
Furthermore, the specific interaction patterns in the ultra-discrete limit depend on the value
of the parameters r and s and different kinds of solutions may appear for different values of r
and s. In particular, large values of r and s tend to result in the production of several vertical
solitons, as shown in figures 6 and 7. In order to preserve the soliton count in these cases,
all the outgoing vertical solitons should be counted as one, as should the incoming ones. In
this sense, a set of outgoing or incoming vertical lines can be considered as a bound state of
several solitons. A full characterization of these phenomena and their parameter dependence
is however outside the scope of this work.
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(a) (b)

(c) (d)

Figure 7. Snapshots illustrating the temporal evolution of a (4, 4)-resonant soliton solution for
equation (6.9), with P1 = −15, P2 = −12, P3 = −9, P4 = −3, P5 = 1, P6 = 1, P7 = 4, P8 =
7, r = 7, s = 4, A1 = −8, A2 = −6, A3 = 0, A4 = 2, A5 = 4, A6 = 7, A7 = 8, A8 = 10:
(a) l = −10, (b) l = 0, (c) l = 10, (d) l = 20.

8. Conclusions

We have demonstrated the existence of soliton resonance and web structure in discrete soliton
systems by presenting a class of solutions of the two-dimensional Toda lattice (2DTL)
equation, its fully discrete analogue and their ultra-discrete limit. Soliton resonance and
web structure had been previously found for nonlinear partial differential equations such as
the KP and cKP systems. Note that the 2DTL is a differential-difference equation, its fully
discrete version is a difference equation and its ultra-discrete limit is a cellular automaton;
therefore our findings show that resonance and web structure phenomena are rather general
features of two-dimensional integrable systems whose solutions are expressed in determinant
form.

A full characterization of the solutions, including the study of asymptotic amplitudes and
velocities and the resonance condition, was provided both in the semi-continuous and in the
fully discrete case. Their analogue in the ultra-discrete case, together with an analysis of
the intermediate patterns of interactions, is out of the scope of this work, and remains as a
problem for further research. Of particular interest is the ultra-discrete 2DTL, where new
types of solutions such as the L-shape soliton shown in figure 4 appear.
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Finally, we note that the class of solutions presented in this work is just one of the possible
choices that yield resonance and web structure. Just like with the KP and cKP equations, the
class of soliton solutions of each of the systems we have considered (namely, the 2DTL and
its fully discrete and its ultra-discrete analogues) is much wider, and includes also partially
resonant solutions. The solutions described in this work represent the extreme case in which all
of the interactions among the various solitons are resonant, whereas ordinary soliton solutions
represent the opposite case where none of the interactions among the solitons are resonant.
Inbetween these two situations, a number of intermediate cases exist in which only some of
the interactions are resonant. As in the case of the KP equation, the study of these partially
resonant solutions remains an open problem.
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Corrigendum

Resonance and web structure in discrete soliton systems: the two-dimensional Toda

lattice and its fully discrete and ultra-discrete analogues

K Maruno and G Biondini 2004 J. Phys. A: Math. Gen. 37 11819–39

There are some minor errors of notations.

(i) N− and N+ must be interchanged throughout the paper. For example, ‘(N−, N+)’ must be
replaced with ‘(N+, N−)’, ‘N− = M−N ’ with ‘N− = N ’, ‘N+ = N ’ with ‘N+ = M−N ’,
‘ci,N++i’ with ‘ci,N−+i’ and ‘ci,N−+i’ with ‘ci,N++i’.

(ii) In sections 2 and 3, replace ‘n → ∞’ with ‘n → −∞’ and ‘→ −∞’ with ‘n → +∞’.
(iii) In sections 4 and 5, replace ‘m → ∞’ with ‘m → −∞’ and ‘→ −∞’ with ‘m → +∞’.
(iv) In theorem 3.3 in section 3, replace Ki(∗,−) with Ki(∗, +),Ki(∗, +) with Ki(∗,−) and

�i(∗,−) with �i(∗, +).
(v) Remove the following two sentences in line 10 from the bottom on page 11834 ‘Note

however that the (2,1)-soliton . . . taking the ultra-discrete limit’.
(vi) In line 13 from the bottom on page 11822, ‘N = 2τ function’ must be replaced with

‘N = 2 τ -function’.
(vii) In definition 3.1, lemma 3.2, definition 5.1 and lemma 5.2, replace ‘I (n)’ with

‘I (s)’, ‘σi,j = n’ with ‘σi,j = s’ and ‘{(ηi, ηM−n+i−1)|i = 1, . . . , n + 1}’ with
‘{(ηi, ηM−s+i−1)|i = 1, . . . , s + 1}’. Also replace ‘j = M − n − 1’ with ‘j = M − s − 1’
in line 7 on page 11824.

(viii) In definitions 3.1 and 5.1, replace ‘|{ηl|ηl(ci,j ) > ηi(ci,j ) = ηj (ci,j )}|’ with
‘|{ηl|ηl(ci,j ) < ηi(ci,j ) = ηj (ci,j )}|’, ‘larger’ with ‘smaller’ in line 2.

(ix) In line 6 on page 11824, replace ‘ηi+1, . . . , ηj−1 < ηi = ηj < η1, . . . , ηi−1, ηj+1, . . . , ηM ’
with ‘ηi+1, . . . , ηj−1 > ηi = ηj > η1, . . . , ηi−1, ηj+1, . . . , ηM ’. In lines 9–10 on page
11824 and line 12 from bottom on page 11830, replace ‘smaller (larger)’ with ‘larger
(smaller)’.

(x) In line 10 from bottom on page 11824, replace

ηi+1, ηi+2, . . . , ηi+N−1︸ ︷︷ ︸
N−1

< ηi = ηN+i

with

ηi+1, ηi+2, . . . , ηi+N−1︸ ︷︷ ︸
N−1

> ηi = ηN+i .

In line 7 on page 11825, replace

ηi = ηN−+i < η1, η2, . . . , ηi−1, ηN−+i+1 . . . , ηM︸ ︷︷ ︸
N−1

with

ηi = ηN++i > η1, η2, . . . , ηi−1, ηN++i+1 . . . , ηM︸ ︷︷ ︸
N−1

.

1751-8113/09/029801+02$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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(xi) In equation (6.10) on page 11832, replace (6.10) with

vl,m,n = �′ lim
ε→0+

ε log τ ε
l,m,n.
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